
String

Index

01. String
- String Literal

- String Initialization

- String Library

- String Array

- Command-line Argument

String

01

String
String Literal

Strings are arrays of characters in which a special character - the null
character - marks the end

A string literal is a sequence of characters enclosed within double
quotes

String literals may contain escape sequences

Character escapes often appear in printf and scanf format strings

"when you come to a fork in the road, take it."

"Candy\nIs dandy\nBut liquor\nIs quicker.\n --Ogden Nash\n"

Candy
Is dandy
But liquor
Is quicker.

--Ogden Nash 4

String
String Literal

The backslash character (\) can be used to continue a string literal from
one line to the next

When two or more string literals are adjacent, the compiler will join
them into a single string

This rule allows us to split a string literal over two or more lines

printf("When you come to a fork in the road, take it. \
--Yogi Berra");

printf("When you come to a fork in the road, take it. "
"--Yogi Berra");

5

String
String Literal

When a C compiler encounters a string literal of length n in a program,
it sets aside n + 1 bytes of memory for the string

This memory will contain the characters in the string, plus one extra
character - the null character - to mark the end of the string

The null character is a byte whose bits are all zero, so it's represented
by the \0 escape sequence

The string literal "abc" is stored as an array of four characters

a b c \0

The string "" is stored as a single null character

\0
6

String
String Literal

Since a string literal is stored as an array, the compiler treats it as a
pointer of type char *

Both printf and scanf expect a value of type char * as their first
argument

The following call of printf passes the address of "abc" (a pointer to
where the letter a is stored in memory)

int printf (const char * format, ...); int scanf (const char * format, ...);

printf("abc");

7

String
String Literal

We can use a string literal wherever C allows a char * pointer

String literals can be subscripted as following, the new value of ch will
be the letter b

A function that converts a number between 0 and 15 into the
equivalent hex digit

char *p;
p = "abc";

char ch;
ch = "abc"[1];

char *p = "abc";
*p = 'd';

char digit_to_hex_char(int digit)
{

return "0123456789ABCDEF"[digit];
} 8

String
String Literal

A string literal containing a single character isn't the same as a
character constant

"a" is represented by a pointer

'a' is represented by an integer

prinft("\n");

prinft('\n'); //Error

9

String
String Initialization

If a string variable needs to hold 80 characters, it must be declared
with length 81 because of the end of string '\0'

char date1[8] = "June 14";

The compiler will automatically add a null character

J u n e 1 4 \0

0 1 2 3 4 5 6 7

date1

"June 14" is not a string literal in this context

10

String
String Initialization

If the initializer is too short to fill the string variable, the compiler will
insert extra null characters

char date2[9] = "June 14";

Then the date2

J u n e 1 4 \0 \0

0 1 2 3 4 5 6 7 8

date2

11

String
String Initialization

An initializer for a string variable can't be longer than the variable, but it
can be the same length

char date3[7] = "June 14";

Then the date3

J u n e 1 4

0 1 2 3 4 5 6

date3

12

String
String Initialization

The declaration of a string variable may omit its length, in which case
the compiler computes it

char date4[] = "June 14";

Then the compiler sets aside eight characters for date4, enough to
store the characters in "June 14" plus a null character

13

String
String Initialization

The declaration as following declares date to be an array

char date[] = "June 14";

The similar-looking declares date to be a pointer

char *date = "June 14";

However, there are significant differences between the two date

➢ In array version
• The characters stored in date can be modified

• The data is an array name

➢ In pointer version
• The date points to a string literal that shouldn't be modified

• The data is a variable that can point to other strings

14

String
String Initialization

Using an uninitialized pointer variable as a string is a serious error

An attempt at building the string "abc"

Because p hasn't been initialized, it causes undefined behavior

char *p;
p[0] = 'a';
p[1] = 'b';
p[2] = 'c';
p[3] = '\0';

15

String
String Library

To print part of a string, use the conversion specification %.ps

The statement is

After writing a string, puts always writes an additional new-line
character

char str[] = "Are we having fun yet?";
printf("%.6s\n", str);

Output is

Are we

The C library also provides puts function

puts(str);

16

String
String Library

The %s conversion specification allows scanf to read a string into a
character array

str is treated as a pointer, so there’s no need to put the & operator in
front of str

When scanf is called, it skips white space, then reads characters and
stores them in str until it encounters a white-space character

scanf always stores a null character at the end of the string

scanf("%s", str);

17

String
String Library

Consider the following program fragment

If the input is

char sentence[SENT_LEN+1];

printf("Enter a sentence:\n");
scanf("%s", sentence);

To C, or not to C: that is the question.

scanf will only store the string "To" in sentence

18

String
String Library

A new-line character will cause scanf to stop reading, but so will a
space or tab character

To read an entire line of input, gets can be used

➢ Doesn’t skip white space before starting to read input

➢ Reads until it finds a new-line character

➢ Discards the new-line character instead of storing it; the null character takes
its place

To C, or not to C: that is the question.

gets(sentence);

19

String
String Library

As they read characters into an array, scanf and gets have no way to
detect when it’s full

Consequently, they may store characters past the end of the array,
causing undefined behavior

scanf can be made safer by using the conversion specification %ns
instead of %s

gets is inherently unsafe; fgets is a much better alternative

20

String
String Library

A program to read a line using getchar() function

ch has int type rather than char type because getchar() returns an int
value

int read_line(char str[], int n)
{

int ch, i = 0;

while ((ch = getchar()) != '\n')
if (i < n)

str[i++] = ch;
str[i] = '\0'; // Terminates string
return i; // Number of characters stored

}

21

String
String Library

A function that counts the number of spaces in a string

int count_spaces(const char s[])
{

int count = 0, i;

for (i = 0; s[i] != '\0'; i++)
if (s[i] == ' ')
count++;

return count;
}

22

String
String Library

A version that employs pointer arithmetic instead of array subscripting

int count_spaces(const char *s)
{

int count = 0;

for (; *s != '\0'; s++)
if (*s == ' ')

count++;
return count;

}

23

String
String Library

Questions in the count_spaces function

➢ Q1: Is it better to use array operations or pointer operations to access the
characters in a string?

➢ Ans: We can use either or both

➢ Q2: Should a string parameter be declared as an array or as a pointer?

➢ Ans: There's no difference between the two

➢ Q3: Does the form of the parameter (s[] or *s) affect what can be supplied
as an argument?

➢ Ans: No

24

String
String Library

Direct attempts to copy or compare strings will fail

Copying a string into a character array using the = operator is not
possible

Using an array name as the left operand of = is illegal

Initializing a character array using = is legal

char str1[10] = "abc"; 25

String
String Library

Attempting to compare strings using a relational or equality operator is
legal but won't produce the desire result

if (str1 == str2) … //Error

#include <string.h>

char *strcpy(char *s1, const char *s2) //Copy string s2 to s1

char *strncpy(char *s1, const char *s2, size_t count) //Copy string s2 to s1 with length count

Why? Because this statement is the pointer comparison

The C library provides a rich set of functions for performing operations
on strings

➢ strcpy and strncpy

26

String
String Library

Hence, if the length of str2 is greater than or equal to that of str1, the
strncpy will leave str1 without a terminating null character

The safer way to use strncpy is

strncpy(str1, str2, (length of str1) - 1) ;
str1[(length of str1) - 1] = '\0';

The second statement guarantees that str1 is always null-terminated

27

String
String Library

➢ strlen
• The function will return the string length with the unsigned integer type

• The Prototype is

size_t strlen(const char *s) ;

➢ size_t is a typeof name that is one of C's unsigned integer types

➢ strlen returns the length of a string s, not including the null character

int len;

len = strlen("abc"); // len is now 3

len = strlen(""); // len is now 0

strcpy(str1, "abc");

len = strlen(str1); // len is now 3
28

String
String Library

➢ strcat
• The function will return a string which is the combination of two strings

• The Prototype is

char *strcat(char *s1, const char *s2);

➢ strcat returns the string combination to s1 (a pointer to the resulting string)

strcpy(str1, "abc");

strcat(str1, "def"); // str1 now contains "abcdef"

strcpy(str1, "abc");

strcpy(str2, "def");

strcat(str1, str2); // str1 now contains "abcdef"

strcpy(str1, "abc");

strcpy(str2, "def");

strcat(str1, strcat(str2, "ghi"));

/* str1 now contains "abcdefghi";

str2 contains "defghi" */

29

String
String Library

➢ strcat
• The function will return a string which is the combination of two strings

• The Prototype is

char *strcat(char *s1, const char *s2);

➢ strcat returns the string combination to s1 (a pointer to the resulting string)

strcpy(str1, "abc");

strcat(str1, "def"); // str1 now contains "abcdef"

strcpy(str1, "abc");

strcpy(str2, "def");

strcat(str1, str2); // str1 now contains "abcdef"

strcpy(str1, "abc");

strcpy(str2, "def");

strcat(str1, strcat(str2, "ghi"));

/* str1 now contains "abcdefghi";

str2 contains "defghi" */

➢ strcat(str1, str2) might cause undefined behavior if the str1 array isn't long
enough to accommodate the characters from str2

30

String
String Library

➢ strcmp
• The function is a comparison function between two strings

• The Prototype is

int strncmp(const char *s1, const char * s2);

➢ strcmp compares the string s1 and s2, returning a value less than, equal to,
or greater than 0, depending on whether s1 is less than, equal to, or greater
than s2

if (strcmp(str1, str2) < 0) // is str1 < str2?

…

31

String
String Library

➢ strcmp considers s1 to be less than s2 if either one of the following
conditions is satisfied
• The first i characters of s1 and s2 match, but the (i+1)st character of s1 is less than the (i+1)st

character of s2

• All characters of s1 match s2, but s1 shorter than s2

➢ As it compares two strings, strcmp looks at the numerical codes for the
characters in the strings
• A-Z, a-z, and 0-9 have consecutive codes

• All upper-case letters are less than all lower-case letters

• Digits are less than letters

• Space are less than all printing characters

32

String
String Library

Write a program to print a One-Month Reminder List

33

String
String Array

There is more than one way to store an array of strings

One option is to use a two-dimensional array of characters, with one
string per row

char planets[][8] = {"Mercury", "Venus", "Earth",
"Mars", "Jupiter", "Saturn",
"Uranus", "Neptune", "Pluto"};

The number of rows in the array can be omitted, but we must specify
the number of columns

34

String
String Array

M e r c u r y \0

V e n u s \0 \0 \0

E a r t h \0 \0 \0

M a r s \0 \0 \0 \0

J u p i t e r \0

S a t u r n \0 \0

U r a n u s \0 \0

N e p t u n e \0

P l u t o \0 \0 \0

0 1 2 3 4 5 6 7

35

String
String Array

Most collections of strings will have a mixture of long strings and short
strings

Hence, a ragged array is needed whose rows can have different lengths

A ragged array can be created by using pointers to strings

char *planets[] = {"Mercury", "Venus", "Earth",

"Mars", "Jupiter", "Saturn",

"Uranus", "Neptune", "Pluto"};

for (i = 0; i < 9; i++)

if (planets[i][0] == 'M')

printf("%s begins with M\n", planets[i]);

M e r c u r y \0

V e n u s \0

E a r t h \0

M a r s \0

J u p i t e r \0

S a t u r n \0

U r a n u s \0

N e p t u n e \0

P l u t o \0
36

String
Command-line Argument

Examples of UNIX ls command

Command-line information is available to all programs, not just
operating system commands

To obtain access to command-line arguments in main

ls

ls -l

ls -l remind.c

int main(int argc, char *argv[])
{

…
}

37

String
Command-line Argument

argc ("argument count") is the number of commend-line arguments

argv ("argument vector") is an array of pointers to the command-line
arguments (stored as strings)

argv[0] points to the program name while argv[1] to argv[argc-1] point
to the remaining command-line arguments

argv[argc] is always a null pointer

int main(int argc, char *argv[])
{

…
}

38

String
Command-line Argument

If the user enter the command line

ls -l remind.c

then the argc will be 3, and argv will be as the following

char **p;
for (p = &argv[1]; *p != NULL; p++)

printf("%s\n", *p);

argv

0

1

2

3

program name

- l \0

r e m i n d . c \0

39

String
Command-line Argument

Write a program to check planet names using command-line arguments

Enter the command line

Output

char *planets[] = {"Mercury", "Venus", "Earth",
"Mars", "Jupiter", "Saturn",
"Uranus", "Neptune", "Pluto"};

40

