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Program Organization
Local and External Variables

Local variable

➢ It declared in the body of a function is regarded as local to the function

int sum_digits(int n)
{

int sum = 0;   // local variable

while (n > 0) {
sum += n % 10;
n /= 10;

}

return sum;
}
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Program Organization
Local and External Variables

Default properties of local variables

➢ Automatic storage duration: storage is "automatically" allocated when the
enclosing function is called and de-allocated when the function returns

➢ Block scope: a local variable is visible from its point of declaration to the end
of the enclosing function body

int main() 
{ 

int variable1;        /* Automatic Storage Duration */ 
int variable2 = 0; /* Automatic Storage Duration */ 
int array1[4];       /* Automatic Storage Duration */ 
{ 

int i; /* Automatic Storage Duration */ 
} /* Now, "i" is dead */ 
return EXIT_SUCCESS; 

} /* Now, "variable1", "variable2", "array1" are dead. */ 5



Program Organization
Local and External Variables

Static storage duration

➢ using static before the declaration of variable makes the variable have static
storage duration

➢ A variable with static storage duration has a permanent storage location, it
retains its value throughout the execution of the program

➢ A static local variable still has block scope, and it's not visible to other
functions
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Program Organization
Local and External Variables

External variable

➢ Passing arguments is one way to transmit information to a
function

➢ Functions can also communicate through external variables
• Variables that are declared outside the body of any function

➢ External variables are sometimes known as global variables

➢ Properties of external variables
• Static storage duration

• File scope

➢ Having file scope means that an external variable is visible
from its point of declaration to the end of the enclosing file
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Program Organization
Local and External Variables

External variables are convenient when functions must share a variable
or when a few functions share a large number of variables

In most cases, it’s better for functions to communicate through
parameters rather than by sharing variables

➢ If we change an external variable during program maintenance (by altering
its type, say), we’ll need to check every function in the same file to see how
the change affects it

➢ If an external variable is assigned an incorrect value, it may be difficult to
identify the guilty function

➢ Functions that rely on external variables are hard to reuse in other programs
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Program Organization
Block

Block

➢ By default, the storage duration of a variable declared in a block is
automatic; storage for the variable is allocated when the block is entered and
deallocated when the block is exited

➢ The variable has block scope; it can’t be referenced outside the block

➢ A variable that belongs to a block can be declared static to give it static
storage duration

if (i > j) 

{

// swap values of i and j

int temp = i;

i = j;

j = temp;

}
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Program Organization
Block

The body of a function is a block, and the blocks are also useful inside a
function body when we need variables for temporary use

Advantages of declaring temporary variables in blocks:

➢ Avoids cluttering declarations at the beginning of the function body with
variables that are used only briefly

➢ Reduces name conflicts
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Program Organization
Scope

In a C program, the same identifier may have
several different meanings

C’s scope rules enable the programmer (and the
compiler) to determine which meaning is relevant at
a given point in the program

The most important scope rule: When a declaration
inside a block names an identifier that’s already
visible, the new declaration temporarily “hides” the
old one, and the identifier takes on a new meaning

At the end of the block, the identifier regains its old
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Program Organization
Block

The body of a function is a block, and the blocks are also useful inside a
function body when we need variables for temporary use

Advantages of declaring temporary variables in blocks:

➢ Avoids cluttering declarations at the beginning of the function body with
variables that are used only briefly

➢ Reduces name conflicts
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Program Organization
Block
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Program Organization
An Example

Write a program to guess a random number using external variables
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➢ time (from <time.h>) - returns the
current time

•time(NULL)

➢ srand (from <stdlib.h>) - initializes
C's random number generator
• srand((unsigned) time(NULL))

➢ rand (from <stdlib.h>) - produces an
apparently random number
• rand()
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Pointer
Pointer Variables

Main memory is divided into bytes and each byte is capable of storing
eight bits of information

Each byte has a unique address

If there are n bytes in memory, the addresses as numbers that range
from 0 to n-1 could be thought as

0 1 1 1 0 1 1 0

ContentAddress

0

0 0 0 1 1 1 1 01

1 1 0 1 1 1 1 1n-1

.

.

.

.

.

.

16



Pointer
Pointer Variables

Each variable in a program occupies one or more bytes of memory

The address of the first byte is determined as the address of the
variable

…

…

The address of i

1000

1001
i
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Pointer
Pointer Variables

The address can be stored in special pointer variables

If the address of a variable i is stored in the pointer variable p, we say
that p "points to" i

p i

When a pointer variable is declared, the asterisk must precede the
variable name

int *p; 

p is a pointer variable capable of pointing to objects of type int

The pointer variable might point to an area of memory
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Pointer
Address and Indirection Operators

Every pointer variable points only to objects of a particular
(referenced) type

int *p;     // points only to integers
double *q;  // points only to doubles
char *r;    // points only to characters

C provides a pair of operators designed for using with pointers

➢ To obtain the address of a variable, the & (address) operator is employed

➢ To access the value from a address, the * (indirection) operator is used
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Pointer
Address and Indirection Operators

Address Operator

➢ It's crucial to initialize p before using it

➢ One way to initialize a pointer variable is to assign it the address of a variable
such as

?p i

int x, *p;
p = &x;

int x;

int *p = &x;
int x, *p = &x;
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Pointer
Address and Indirection Operators

Indirection Operator

➢ Once a pointer variable points to an object, the * operator can be used to
access the value stored in the object

int x = 10, *p;
p = &x;
printf("%d\n", *p);

j = *&i;   // same as j = i;

As long as p points to i, *p is an alias for i, i.e.

➢ *p has the same value as i

➢ Changing the value of *p is same as changing the value of i
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Pointer
Address and Indirection Operators

Indirection Operator

p = &i;

i = 1;

printf("%d\n", i);       //prints 1

printf("%d\n", *p);   // prints 1

*p = 2;

printf("%d\n", i);       //prints 2

printf("%d\n", *p);   // prints 2

(a) *p

i is variable and p points to i, which of the 
following expressions are aliases for i?

(b) *&p (c) *i (d) *&i

(e) &p (f) &*p (g) &i (h) &*i

?p i

1p i

2p i
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Pointer
Address and Indirection Operators

Applying the indirection operator to an uninitialized pointer variable
causes undefined behavior

int *p;
printf("%d", *p);   // Wrong

Assigning a value to *p is particularly dangerous

int *p;
*p = 1;   // Wrong

23



Pointer
Address and Indirection Operators

Conversion specification: %p
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Pointer
Pointer Assignment

C allows the use of assignment operator to copy pointers of the same
type

int i, j, *p, *q;

p = &i;

q = p;

?

p

i

q
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Pointer
Pointer Assignment

If p and q both point to i, i can be changed by assigning a new value to
either *p or *q

1

p

i

q

2

p

i

q

*p = 1;

*q = 2;
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Pointer
Pointer Assignment

Be careful not to confuse q = p with *q = *p

p 1 i

q ? j

p = &i;
q = &j;
i = 1;

*q = *p

p 1 i

q 1 j

(a) p = i

If i is an int variable and p and q are
pointers to int, which of the following
assignments are legal?

(b) p = &q (c) p = *q

(d) *p = &i (e) p = *&q (f) *p = q

(g) &p = q (h) p = q (i) *p = *q
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Pointer
Pointer Assignment

New definition of decompose

void decompose(double x, long *int_part, double *frac_part)
{

*int_part = (long) x;
*frac_part = x - *int_part;

}

void decompose(double x, long *int_part, double *frac_part);

void decompose(double, long *, double *);
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Pointer
Pointer Assignment

When calling the decompose

int_part ? i

frac_part ? d

3.14159x

void decompose(double x, long *int_part, double *frac_part)
{

*int_part = (long) x;
*frac_part = x - *int_part;

}

int i, d;

decompose(3.14159, &i, &d);
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Pointer
Pointer Assignment

When calling the decompose

void decompose(double x, long *int_part, double *frac_part)
{

*int_part = (long) x;
*frac_part = x - *int_part;

}

int i, d;

decompose(3.14159, &i, &d);

int_part ? i

frac_part ? d

3.14159x

int_part 3 i

frac_part ? d

3 i

.14159 d30



Pointer
Pointer Assignment

Recall the scanf function

int i;
…
scanf("%d", &i);

Without the &, scanf would be supplied with the value of i

However, it's not always true that scanf needs the & operator

int i, *p;
…

p = &i;
scanf("%d", p); scanf("%d", &p);   // Wrong
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Pointer
Pointer Assignment

Write a program to exchange the values of the variables using swap
function
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Pointer
Return with Pointer

Using const to protect argument

➢ when a argument is a pointer to a variable x, we normally assume that x will
be modified

➢ It's possible, though, that f merely needs to examine the value of x, not
change it

➢ The reason for the pointer might be efficiency: passing the value of a
variable requires a large amount of storage

f(&x);
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Pointer
Return with Pointer

Using const to protect argument

➢ Hence, const can be used to document that a function won't change an
object whose address is passed to the function

➢ const goes in the parameter's declaration, just before the specification of its
type:

➢ Attempting to modify *p is an error that the compiler will detect

void f(const int *p)
{

*p = 0;   // Wrong
}
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Pointer
Return with Pointer
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Pointer
Return with Pointer

The functions can return the pointers

int *max(int *a, int *b)
{

if (*a > *b)
return a;

else
return b;

}

int *p, i, j;
…
p = max(&i, &j);
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Pointer
Return with Pointer

Important!! Never return a pointer to an automatic local variable such
as

int *f(void)
{

int i;
…
return &i;

}

Why? Because the variable i won't exist after f returns
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Pointer
Return with Pointer

Pointers can point to array element

If a is an array, then &a[i] is a pointer to the element i of a

int *find_middle(int a[], int n) 

{
return &a[n/2];

}
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Pointer
Return with Pointer

Write a program to find the largest and smallest elements in an array
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