
Program Organization

and

Pointer

Index

01. Program Organization
- Local and External Variables

- Block

- Scope

02. Pointer
- Pointer Variables

- Address and Indirection Operators

- Pointer Assignment

- Return with Pointer

Program Organization

01

Program Organization
Local and External Variables

Local variable

➢ It declared in the body of a function is regarded as local to the function

int sum_digits(int n)
{

int sum = 0; // local variable

while (n > 0) {
sum += n % 10;
n /= 10;

}

return sum;
}

4

Program Organization
Local and External Variables

Default properties of local variables

➢ Automatic storage duration: storage is "automatically" allocated when the
enclosing function is called and de-allocated when the function returns

➢ Block scope: a local variable is visible from its point of declaration to the end
of the enclosing function body

int main()
{

int variable1; /* Automatic Storage Duration */
int variable2 = 0; /* Automatic Storage Duration */
int array1[4]; /* Automatic Storage Duration */
{

int i; /* Automatic Storage Duration */
} /* Now, "i" is dead */
return EXIT_SUCCESS;

} /* Now, "variable1", "variable2", "array1" are dead. */ 5

Program Organization
Local and External Variables

Static storage duration

➢ using static before the declaration of variable makes the variable have static
storage duration

➢ A variable with static storage duration has a permanent storage location, it
retains its value throughout the execution of the program

➢ A static local variable still has block scope, and it's not visible to other
functions

6

Program Organization
Local and External Variables

External variable

➢ Passing arguments is one way to transmit information to a
function

➢ Functions can also communicate through external variables
• Variables that are declared outside the body of any function

➢ External variables are sometimes known as global variables

➢ Properties of external variables
• Static storage duration

• File scope

➢ Having file scope means that an external variable is visible
from its point of declaration to the end of the enclosing file

7

Program Organization
Local and External Variables

External variables are convenient when functions must share a variable
or when a few functions share a large number of variables

In most cases, it’s better for functions to communicate through
parameters rather than by sharing variables

➢ If we change an external variable during program maintenance (by altering
its type, say), we’ll need to check every function in the same file to see how
the change affects it

➢ If an external variable is assigned an incorrect value, it may be difficult to
identify the guilty function

➢ Functions that rely on external variables are hard to reuse in other programs

8

Program Organization
Block

Block

➢ By default, the storage duration of a variable declared in a block is
automatic; storage for the variable is allocated when the block is entered and
deallocated when the block is exited

➢ The variable has block scope; it can’t be referenced outside the block

➢ A variable that belongs to a block can be declared static to give it static
storage duration

if (i > j)

{

// swap values of i and j

int temp = i;

i = j;

j = temp;

}
9

Program Organization
Block

The body of a function is a block, and the blocks are also useful inside a
function body when we need variables for temporary use

Advantages of declaring temporary variables in blocks:

➢ Avoids cluttering declarations at the beginning of the function body with
variables that are used only briefly

➢ Reduces name conflicts

10

Program Organization
Scope

In a C program, the same identifier may have
several different meanings

C’s scope rules enable the programmer (and the
compiler) to determine which meaning is relevant at
a given point in the program

The most important scope rule: When a declaration
inside a block names an identifier that’s already
visible, the new declaration temporarily “hides” the
old one, and the identifier takes on a new meaning

At the end of the block, the identifier regains its old

11

Program Organization
Block

The body of a function is a block, and the blocks are also useful inside a
function body when we need variables for temporary use

Advantages of declaring temporary variables in blocks:

➢ Avoids cluttering declarations at the beginning of the function body with
variables that are used only briefly

➢ Reduces name conflicts

12

Program Organization
Block

13

Program Organization
An Example

Write a program to guess a random number using external variables

14

➢ time (from <time.h>) - returns the
current time

•time(NULL)

➢ srand (from <stdlib.h>) - initializes
C's random number generator
• srand((unsigned) time(NULL))

➢ rand (from <stdlib.h>) - produces an
apparently random number
• rand()

Pointer

02

Pointer
Pointer Variables

Main memory is divided into bytes and each byte is capable of storing
eight bits of information

Each byte has a unique address

If there are n bytes in memory, the addresses as numbers that range
from 0 to n-1 could be thought as

0 1 1 1 0 1 1 0

ContentAddress

0

0 0 0 1 1 1 1 01

1 1 0 1 1 1 1 1n-1

.

.

.

.

.

.

16

Pointer
Pointer Variables

Each variable in a program occupies one or more bytes of memory

The address of the first byte is determined as the address of the
variable

…

…

The address of i

1000

1001
i

17

Pointer
Pointer Variables

The address can be stored in special pointer variables

If the address of a variable i is stored in the pointer variable p, we say
that p "points to" i

p i

When a pointer variable is declared, the asterisk must precede the
variable name

int *p;

p is a pointer variable capable of pointing to objects of type int

The pointer variable might point to an area of memory
18

Pointer
Address and Indirection Operators

Every pointer variable points only to objects of a particular
(referenced) type

int *p; // points only to integers
double *q; // points only to doubles
char *r; // points only to characters

C provides a pair of operators designed for using with pointers

➢ To obtain the address of a variable, the & (address) operator is employed

➢ To access the value from a address, the * (indirection) operator is used

19

Pointer
Address and Indirection Operators

Address Operator

➢ It's crucial to initialize p before using it

➢ One way to initialize a pointer variable is to assign it the address of a variable
such as

?p i

int x, *p;
p = &x;

int x;

int *p = &x;
int x, *p = &x;

20

Pointer
Address and Indirection Operators

Indirection Operator

➢ Once a pointer variable points to an object, the * operator can be used to
access the value stored in the object

int x = 10, *p;
p = &x;
printf("%d\n", *p);

j = *&i; // same as j = i;

As long as p points to i, *p is an alias for i, i.e.

➢ *p has the same value as i

➢ Changing the value of *p is same as changing the value of i

21

Pointer
Address and Indirection Operators

Indirection Operator

p = &i;

i = 1;

printf("%d\n", i); //prints 1

printf("%d\n", *p); // prints 1

*p = 2;

printf("%d\n", i); //prints 2

printf("%d\n", *p); // prints 2

(a) *p

i is variable and p points to i, which of the
following expressions are aliases for i?

(b) *&p (c) *i (d) *&i

(e) &p (f) &*p (g) &i (h) &*i

?p i

1p i

2p i

22

Pointer
Address and Indirection Operators

Applying the indirection operator to an uninitialized pointer variable
causes undefined behavior

int *p;
printf("%d", *p); // Wrong

Assigning a value to *p is particularly dangerous

int *p;
*p = 1; // Wrong

23

Pointer
Address and Indirection Operators

Conversion specification: %p

24

Pointer
Pointer Assignment

C allows the use of assignment operator to copy pointers of the same
type

int i, j, *p, *q;

p = &i;

q = p;

?

p

i

q

25

Pointer
Pointer Assignment

If p and q both point to i, i can be changed by assigning a new value to
either *p or *q

1

p

i

q

2

p

i

q

*p = 1;

*q = 2;

26

Pointer
Pointer Assignment

Be careful not to confuse q = p with *q = *p

p 1 i

q ? j

p = &i;
q = &j;
i = 1;

*q = *p

p 1 i

q 1 j

(a) p = i

If i is an int variable and p and q are
pointers to int, which of the following
assignments are legal?

(b) p = &q (c) p = *q

(d) *p = &i (e) p = *&q (f) *p = q

(g) &p = q (h) p = q (i) *p = *q

27

Pointer
Pointer Assignment

New definition of decompose

void decompose(double x, long *int_part, double *frac_part)
{

*int_part = (long) x;
*frac_part = x - *int_part;

}

void decompose(double x, long *int_part, double *frac_part);

void decompose(double, long *, double *);

28

Pointer
Pointer Assignment

When calling the decompose

int_part ? i

frac_part ? d

3.14159x

void decompose(double x, long *int_part, double *frac_part)
{

*int_part = (long) x;
*frac_part = x - *int_part;

}

int i, d;

decompose(3.14159, &i, &d);

29

Pointer
Pointer Assignment

When calling the decompose

void decompose(double x, long *int_part, double *frac_part)
{

*int_part = (long) x;
*frac_part = x - *int_part;

}

int i, d;

decompose(3.14159, &i, &d);

int_part ? i

frac_part ? d

3.14159x

int_part 3 i

frac_part ? d

3 i

.14159 d30

Pointer
Pointer Assignment

Recall the scanf function

int i;
…
scanf("%d", &i);

Without the &, scanf would be supplied with the value of i

However, it's not always true that scanf needs the & operator

int i, *p;
…

p = &i;
scanf("%d", p); scanf("%d", &p); // Wrong

31

Pointer
Pointer Assignment

Write a program to exchange the values of the variables using swap
function

32

Pointer
Return with Pointer

Using const to protect argument

➢ when a argument is a pointer to a variable x, we normally assume that x will
be modified

➢ It's possible, though, that f merely needs to examine the value of x, not
change it

➢ The reason for the pointer might be efficiency: passing the value of a
variable requires a large amount of storage

f(&x);

33

Pointer
Return with Pointer

Using const to protect argument

➢ Hence, const can be used to document that a function won't change an
object whose address is passed to the function

➢ const goes in the parameter's declaration, just before the specification of its
type:

➢ Attempting to modify *p is an error that the compiler will detect

void f(const int *p)
{

*p = 0; // Wrong
}

34

Pointer
Return with Pointer

35

Pointer
Return with Pointer

The functions can return the pointers

int *max(int *a, int *b)
{

if (*a > *b)
return a;

else
return b;

}

int *p, i, j;
…
p = max(&i, &j);

36

Pointer
Return with Pointer

Important!! Never return a pointer to an automatic local variable such
as

int *f(void)
{

int i;
…
return &i;

}

Why? Because the variable i won't exist after f returns

37

Pointer
Return with Pointer

Pointers can point to array element

If a is an array, then &a[i] is a pointer to the element i of a

int *find_middle(int a[], int n)

{
return &a[n/2];

}

38

Pointer
Return with Pointer

Write a program to find the largest and smallest elements in an array

39

