
Array



Index

01. Array
- Definition

- One-dimensional

- Multi-dimensional

- Initialization



Array
Definition - Scalar vs Aggregate Variables

Scalar is capable of holding a single data item

C also supports aggregate variables that can store collections of values

Two kinds of aggregates in C

➢ Array

➢ Structure

3



Array
One-dimensional Array

An array is a data structure containing a number of data values with
same type

The values, i.e. elements, can be selected at their index individually

The elements of a one-dimensional array a are conceptually arranged
one after another in a single row

How to declare an array?

0Index 94int a[10];

#define N 10
int a[N];

4



Array
One-dimensional Array

How to access elements in the array?

➢ Write the array name followed by an integer value in square bracket

• This is referred to as subscripting or indexing the array

• Important concept: the range of index is from 0 to N-1

int x, a[10];
x = a[0]; //x = 1

0Index 94

a[0] a[4] a[9]

1 5 10

a[4] = 50;

0Index 94

a[0] a[4] a[9]

1 50 10

➢ In general, if an array contains elements of type T, then each element of the
array is treated as if it were a variable of type T 5



Array
One-dimensional Array

Loop expression is the array best friend

#define N 10
int a[N];

//The array initialization
for (int i = 0; i < N; i++)
{

a[i] = 0;
}

//The array initialization
for (int i = 0; i < N; i++)
{

scanf('%d", &a[i]);
}

//The array initialization
for (int i = 0; i < N;)
{

scanf('%d", &a[i++]);
}

6



Array
One-dimensional Array

C doesn't require that subscript bounds be checked; if a subscript goes
out of range, the program's behavior is undefined

A common mistake: forgetting that an array with n elements is indexed
from 0 to n-1, not 1 to n

int a[10], i;

for (i = 1; i <= 10; i++)
a[i] = 0;

7



Array
One-dimensional Array

An array subscript may be any integer expression

The expression can even have side effects

a[i+j*10] = 0;

i = 0;
while (i < N)

a[i++] = 0;

8



Array
One-dimensional Array

Be careful when an array subscript has a side effect

The expression a[i] = b[i++] accesses the value of i and also modifies
i, causing undefined behavior

The problem can be avoided by removing the increment from the
subscript

i = 0;
while (i < N)

a[i] = b[i++];

for (i = 0; i < N; i++)
a[i] = b[i];

9



Array
One-dimensional Array

Write a program to reverse a series of entered numbers using array

10



Array
Initialization

Write a program to present the repeated digits

11



Array
Initialization

An array, like any other variable, can be given an initial value at the time
it's declared

12

int a[10] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};

int a[10] = {1, 2, 3, 4}; //initial value is {1, 2, 3, 4, 0, 0, 0, 0, 0, 0}

int a[10] = {0}; //initial value is {0, 0, 0, 0, 0, 0, 0, 0, 0, 0}

int a[10] = {6}; -> ?

int a[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};

//initial value is {6, 0, 0, 0, 0, 0, 0, 0, 0, 0}



Array
Initialization

It's often the case that relatively few elements of an array need to be
initialized explicitly; the other elements can be given default values

13

int a[10] = {0, 2, 0, 0, 0, 6, 0, 0, 0, 55};

int a[10] = {[1] = 2, [5] = 6, [9] = 55};

Initial value is {0, 2, 0, 0, 0, 6, 0, 0, 0, 55}

int a[] = {[1] = 2, [5] = 6, [9] = 55, [23] = 24};

int a[10] = {1, 2, 3, [5] = 6, 7, [8] = 11};

What is the length of array a?



Array
Sizeof Operator

The sizeof operator can determine the size of an array (in bytes)

If a is an array of 10 integers, then sizeof(a) is typically 40 (assuming that
each integer requires 4 bytes)

Hence, it can be also used to calculate the length of an array

int a[] = {[1] = 2, [5] = 6, [9] = 55, [23] = 24};
printf("The length of arrar a is: %d", (int)(sizeof(a)/sizeof(a[0])));

for (i = 0; i < sizeof(a) / sizeof(a[0]); i++)
a[i] = 0;

Some programmers use this expression when the length of the array is
needed

A loop that clears the array a

14



Array
Sizeof Operator

Some compliers produce a warning message for the expression

The variable i probably has type int (a signed type), whereas sizeof
produces a value of type size_t (an unsigned type)

Comparing a signed integer with an unsigned integer can be dangerous,
but in this case it's safe

How to avoid a warning?

i < sizeof(a) / sizeof(a[0])

for (i = 0; i < (int) (sizeof(a) / sizeof(a[0])); i++)
a[i] = 0;

#define SIZE ((int) (sizeof(a) / sizeof(a[0])))

for (i = 0; i < SIZE; i++)
a[i] = 0; 15



Array
Multi-dimensional Array

An array may have any number of dimensions

The following declaration creates a two-dimensional array (a matrix, in
mathematical terminology)

int x[3][4];

col 1 col 2 col 3 col 4

row 1 x[0][0] x[0][1] x[0][2] x[0][3]

row 2 x[1][0] x[1][1] x[1][2] x[1][3]

row 3 x[2][0] x[2][1] x[2][2] x[2][3]

To access the element of m in row i, column j, we must write m[i][j]

Don't use m[i, j] because C treats the comma as an operator in this
context, so m[i, j] = m[j] 16



Array
Multi-dimensional Array

Although we visualize two-dimensional arrays as table, that's not the way
they're actually stored in computer memory

int x[3][4];

col 1 col 2 col 3 col 4

row 1 x[0][0] x[0][1] x[0][2] x[0][3]

row 2 x[1][0] x[1][1] x[1][2] x[1][3]

row 3 x[2][0] x[2][1] x[2][2] x[2][3]

x[0][0] x[0][1] x[0][2] x[0][3] x[1][0] x[1][1] x[1][2] x[1][3] x[2][0] x[2][1] x[2][2] x[2][3]

row 1 row 2 row 3

17



Array
Initialization

We can create an initializer for a two-dimensional array by nesting one-
dimensional initializers

int x[3][4] = {{1, 1, 1, 1},
{0, 1, 0, 1}};

int x[3][4] = {{1, 1, 1},
{0, 0, 1, 0},
{1, 0}};

double x[2][2] = {[0][0] = 1.0, [1][1] = 1.0};

18



Array
An Example

Write a program to deal a random hand of cards with constant arrays

Additional C library and function for completing program

➢ time (from <time.h>) - returns the current time
• time(NULL)

➢ srand (from <stdlib.h>) - initializes C's random number generator
• srand((unsigned) time(NULL))

➢ rand (from <stdlib.h>) - produces an apparently random number
• rand()

19


