只寫答案而沒有解釋說明,扣一半分數

- 1. Consider a router that interconnects two subnets: S1 and S2. Suppose all of the interfaces in each of these three subnets are required to have the prefix 120.107.17/24. Also suppose S1 is required to support up to 120 interfaces and S2 up to 30 interfaces. Provide two network addresses (of the form a.b.c.d/x) that satisfy these constraints. (要解釋原因, 4% each, 8% total)
- 2. List three tables of node X, Y and Z with the distance vector algorithm, from the time when three nodes are initialized to the time three tables are stabilized. (table 一行 3% (x, y, z 各看自己那列 1%),共 6%。 數值有變動時,要寫出公式 2%, 共 4% => 10% total)

3. Use Dijkstra's shortest-path algorithm to compute the shortest path from z to all network nodes. (a) Show how the algorithm works by computing a table. (數值相同時,優先選字母順序較前者,公式 1% each,表格每列(含箭頭)1%, 16%) (b) show the forwarding table of z. (7%) (c) What is the count-to-infinity problem? (3%) (26% total)

- 4. 針對 IPv4 Class B 網路(以十進位表示,要寫完整過程) (20%)
 - a. 求出最後一個 Class B 網路的網路表示法為何?(2%) 可用 IP 範圍? (4%) 共有幾個 IP 可用? (2%) mask 的值為何?(2%)
 - b. 將最後一個 Class B 網路分成 14 個 subnet, subnet mask 的值為何?(2%) 請列出第一個 subnet 的網路表示法 (2%) 可用 IP 範圍?(4%) 共有幾個 IP 可用?(2%)
- 5. Suppose datagrams are limited to 1000 bytes (including header) between source host A and destination host B. Assuming a 20-byte IP header and 20-byte TCP header, (a) How many datagrams would be required to send an MP3 consisting of 4 million bytes? (4%) (b) How many bytes (including header) are each datagram? (Two answers: 2%) (8% total)
- 6. (a) How are routing algorithms classified by global and decentralized information? (b) What are these two routing algorithms? (10%)
- 7. (a) What is the goal of DHCP? (2%) (b) List four steps of DHCP (8%) (10% total)
- 8. Explain four NAT operations with this figure (用圖上的數值說明 8%)

只寫答案而沒有解釋說明,扣一半分數

1. Consider a router that interconnects two subnets: S1 and S2. Suppose all of the interfaces in each of these three subnets are required to have the prefix 120.107.17/24. Also suppose S1 is required to support up to 120 interfaces and S2 up to 30 interfaces. Provide two network addresses (of the form a.b.c.d/x) that satisfy these constraints. (要解釋原因, 4% each, 8% total)

Ans:

S1:
$$120 < 128 = 2^7$$
, $32-7=25$, 設為 $120.107.17.0...$ (2)/25= $120.107.17.0/25$ (4%) S2: $30 < 32 = 2^5$, $32-5=27$, 設為 $120.107.17.100...$ (2)/25= $120.107.17.128/27$ (4%)

2. List three tables of node X, Y and Z with the distance vector algorithm, from the time when three nodes are initialized to the time three tables are stabilized. (table 一行 3% (x, y, z 各看自己那列 1%),共 6%。 數值有變動時,要寫出公式 2%, 共 4% => 10% total)

Ans:

3. Use Dijkstra's shortest-path algorithm to compute the shortest path from z to all network nodes. (a) Show how the algorithm works by computing a table. (數值相同時,優先選字母順序較前者,公式 1% each, 表格每列(含箭頭)1%, 16%) (b) show the forwarding table of z. (7%) (c) What is the count-to-infinity problem? (3%) (26% total)

Ans: (1% each, 7% total)

	7 ms. (170 cach, 770 total)							
N'	D(s),p(s)	D(t),p(t)	D(u),p(u)	D(v),p(v)	D(w),p(w)	D(x),p(x)	D(y),p(y)	
z	∞	2, z	∞	∞	∞	∞	14, z	
zt •	a)3, t		b) 4, t	c) 11, t	8	8	d) 6, t	
zts			4, t	11, t	8	8	6, t	
ztsu 🕶				_e) 5, u	f) 7, u	8	6, t	
ztsuv		_			g) 6, v	h) 8, v	6, t	
ztsuvw						i) 7, w	-6,t	
ztsuvwy -						−7, w		
ztsuvwyx								

(1% each, 9% total)

- a). $D(s) = \min\{D(s), D(t) + C(t, s)\} = \min\{\infty, 2 + 1\} = 3$
- b). $D(u) = \min\{D(u), D(t) + C(t, u)\} = \min\{\infty, 2 + 2\} = 4$
- c). $D(v) = \min\{D(v), D(t) + C(t, v)\} = \min\{\infty, 2 + 9\} = 11$
- d). $D(y) = min\{D(y), D(t) + C(t, y)\} = min\{14, 2 + 4\} = 6$
- e). $D(v) = min\{D(v), D(u) + C(u, v)\} = min\{11, 4 + 1\} = 5$
- f). $D(w) = \min\{D(w), D(u) + C(u, w)\} = \min\{\infty, 4 + 3\} = 7$
- g). $D(w) = \min\{D(w), D(v) + C(v, w)\} = \min\{7, 5+1\} = 6$
- h). $D(x) = \min\{D(x), D(v) + C(v, x)\} = \min\{\infty, 5 + 3\} = 8$
- i). $D(x) = \min\{D(x), D(w) + C(w, x)\} = \min\{8, 6 + 1\} = 7$

(b) Forwarding table of z: (1% each, 7% total)

Destination	Next hop (output link)		
s	t		
t	t		
u	t		
V	t		
W	t		
X	t		
у	t		

- (c) The count-to-infinity problem means that it takes a long time for a distance vector routing algorithm to converge when there is a link cost increase. (3%)
- 4. 針對 IPv4 Class B 網路 (以十進位表示,要寫完整過程) (20%)
 - a. 求出最後一個 Class B網路的網路表示法為何?(2%) 可用 IP 範圍? (4%) 共有幾個 IP 可用?

(2%) mask 的值為何?(2%)

b. 將最後一個 Class B 網路分成 14 個 subnet, subnet mask 的值為何?(2%) 請列出第一個 subnet 的網路表示法 (2%) 可用 IP 範圍?(4%) 共有幾個 IP 可用?(2%)

Ans:

a.

最後一個 class B 的 Network ID 表示為 10<u>111111. 11111110</u>. XXXXXXXXX. XXXXXXXX , 十進位 為為 <u>191.254.0.0</u> (2%)

所有 16 個 bit 的 X 不可以全為 0 或 1,

因此第一個可用 Host ID 為 10111111. 11111110. 000000000.0000001 = 191.254.0.1 (2%)

最後一個可用 Host ID 為 10111111. 11111110. 1111111110 = 191.254.255.254 (2%)

->共有 <u>2¹⁶-2</u> 個可用 Host ID (2%)

Mask: <u>255.255.0.0</u> (2%)

b.

因此第一個可用 Host ID 為 $10\underline{111111}$. 111111110. $0000\underline{0000}$. 00000001 = $\underline{191.254.0.1}$ (2%)

最後一個可用 Host ID 為 10<u>111111. 11111110</u>.0000<u>1111. 11111110</u> = <u>191.254.15.254</u> (2%)

->共有 <u>2¹²-2=4094</u> 個可用 Host ID (2%)

5. Suppose datagrams are limited to 1000 bytes (including header) between source host A and destination host B. Assuming a 20-byte IP header and 20-byte TCP header, (a) How many datagrams would be required to send an MP3 consisting of 4 million bytes? (4%) (b) How many bytes (including header) are each datagram? (two answers: 2%) (8% total)

Ans:

MP3 file size = 4 million bytes. Assume the data is carried in TCP segments, with each TCP segment also having 20 bytes of header. Then each datagram can carry 1000-40=960 bytes of the MP3 file Number of datagrams required Ceiling $(4x10^6/960) = 4167 (4\%)$

- = All but the last datagram will be $\underline{1,000}$ bytes (2%); the last datagram will be $640+40 = \underline{680}$ bytes. (2%)
- 6. (a) How are routing algorithms classified by global and decentralized information? (b) What are these two routing algorithms? (10%)

Ans:

(a) Global:

all routers have complete topology, link cost info (2%)

Decentralized:

router knows <u>physically-connected neighbors</u>, <u>link costs to neighbors</u> (2%) iterative process of computation, exchange of info with neighbors (2%)

- (b) "link state" algorithms and "distance vector" algorithms (4%)
- 7. (a) What is the goal of DHCP? (2%) (b) List four steps of DHCP (8%) (10% total) Ans:
 - (a) Goal: allow host to *dynamically* obtain its IP address from network server when it joins network (2%)

(b) Flow: (8%)

- <u>host</u> broadcasts "<u>DHCP discover</u>" msg (2%)
- DHCP server responds with "DHCP offer" msg (2%)
- <u>host</u> requests IP address: "<u>DHCP request</u>" msg (2%)
- <u>DHCP server</u> sends address: "<u>DHCP ack</u>" msg (2%)
- 8. Explain four NAT operations with this figure (用圖上的數值說明 8%)

Ans:

NAT router must: (8%)

- outgoing datagrams: replace (source IP address, port #)=(10.0.0.1, 3345) (1%) of every outgoing datagram to (NAT IP address, new port #)=(138.76.29.7, 5001) (1%)
- remember (in NAT translation table) every (source IP address, port #)=(10.0.0.1, 3345) (2%) to (NAT IP address, new port #)=(138.76.29.7, 5001) translation pair (2%)
- incoming datagrams: replace (NAT IP address, new port #)=(138.76.29.7, 5001) (1%) in dest fields of every incoming datagram with corresponding (source IP address, port #)=(10.0.0.1, 3345) (1%) stored in NAT table