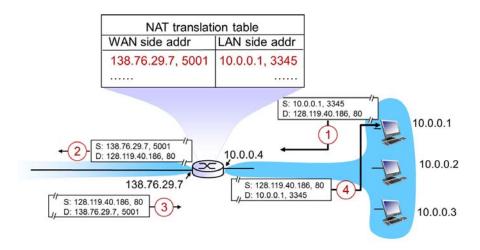

只寫答案而沒有解釋說明,扣一半分數

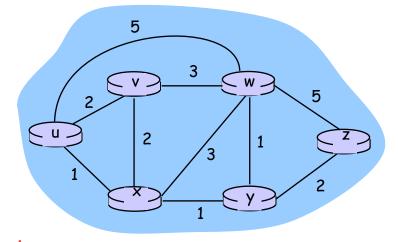

- 1. 針對 163.107.172.1 這個 IP address,將此 IP 網路分成 7 subnets, subnet mask 的值為何?(2%)請列出第7個 subnet 的網路表示法 (2%)可用 IP 範圍?(2%)共有幾個 IP 可用?(1%) (以十進位表示,要寫完整過程,7% total)
- 2. Use Dijkstra's shortest-path algorithm to compute the shortest path from the source node **Z** to all other network nodes. (a) Show how the algorithm works by computing a table. (6%) (b) Show the forwarding table of the source node **Z**. (5%, 11% total) (cost 數值相同時,優先選字母順序較前者;數值有變動時,要寫出公式)

3. List changing processes of three tables of node X, Y and Z with the distance vector algorithm, from the time before the X-Y link cost is changed from 4 to 1 to the time three tables are stabilized. (第 1 行 table 是未變動前的穩定狀況,後 3 行 table 一行 3% (x, y, z 各看自己那列 1%),共 9%。數值有變動時,要寫出公式,各 1%共 4% => total 13%)

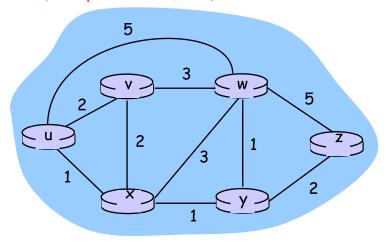
4. Explain four NAT operations with this figure (用圖上的數值說明 8%)

- 5. (a) What is the goal of DHCP? (2%) (b) List four steps of DHCP (8%) (10% total)
- 6. Describe how Ethernet uses <u>CSMA/CD</u> with <u>exponential backoff</u> (要寫出碰撞後如何動作) in detail (12%)
- 7. (a) List three types of multiple access protocols and describe how they work briefly. (9%) (b) Classify FDMA, Token Passing and CSMA/CD into one of the type to whom they belong. (6%) (15% total)
- 8. (a) List a distance vector routing protocol. (2%) (b) List a Link State routing protocol. (2%) (c) Which protocol in (b) and (c) has the Security feature? (2%) (6% total)
- 9. Compare and contrast link state and distance vector routing algorithms. (10%)
- 10. Consider the CRC generator, G=1001, and suppose that D has the value 10101010000. What is the value of R? (要寫出運算過程 6%, 8% total)

只寫答案而沒有解釋說明,扣一半分數


1. 針對 163.107.172.1 這個 IP address,將此 IP 網路分成 7 subnets, subnet mask 的值為何?(2%) 請列出第 7 個 subnet 的網路表示法 (2%) 可用 IP 範圍?(2%) 共有幾個 IP 可用?(1%)(以十進位表示,要寫完整過程,7% total)

Ans:


將此 Class B 網路分成 7 個 subnet , 加上全為 , 0 與全為 , 1 的兩個不能用的 subnet ID , 最少需要 , 7+2=9 , 9 subnet mask 的值 => 需要 Host ID 的前 4 個 bits 當作 subnet ID , 6 所以新的 subnet mask 是由原本 Class B 的 default subnet mask , 255.255.0.0 來改,改成 , 255.255.11110000.00000000=> , 255.255.240.0 (2%)

因此第一個可用 Host ID 為 $10100011.01101011.0111\underline{0000.00000001} = \underline{163.107.112.1}$ (1%) 最後一個可用 Host ID 為 $10100011.01101011.0111\underline{1111.11111110} = \underline{163.107.127.254}$ (1%) ->共有 2^{12} -2=4094 個可用 Host ID (1%)

2. Use Dijkstra's shortest-path algorithm to compute the shortest path from the source node Z to all other network nodes. (a) Show how the algorithm works by computing a table. (6%) (b) Show the forwarding table of the source node Z. (5%, 11% total) (cost 數值相同時,優先選字母順序較前者; 數值有變動時,要寫出公式)

Ans: (除 step 之外, 一欄 1 分)

以z為起點

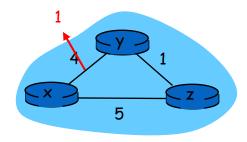
Step	N'	D(u), p(u)	D(v), p(v)	D(w), p(w)	D(x), p(x)	D(y), p(y)
0	z	∞	∞	5, z	∞	<u>2, z</u>
1	zy	∞	∞	<u>3, y</u> #1	3, y #2	
2	zyw	8, w #3	6, w #4		<u>3, y</u>	
3	zywx	<u>4, x</u> #5	5, x #6			
4	zywxu		<u>5, x</u>			
5	zywxuv					

 $\#1.D(w)=\min(D(w),D(y)+c(y,w))=\min(5, 2+1)=3$

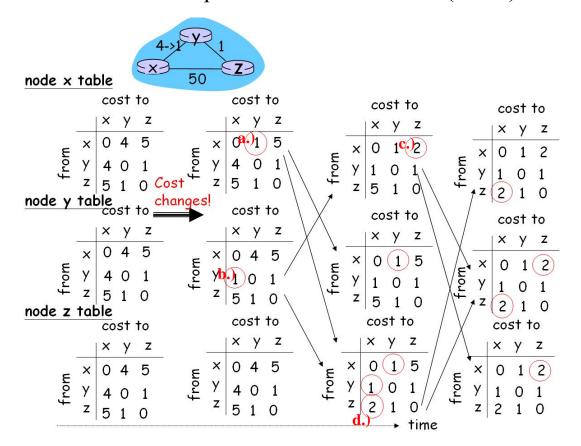
 $\#2.D(x)=\min(D(x),D(y)+c(y,x))=\min(\infty, 2+1)=3$

#3.D(u)=min(D(u),D(w)+c(w,u))=min(∞ , 3+5)=8

#4.D(v)=min(D(v),D(w)+c(w,v))=min(∞ , 3+3)=6


#5.D(u)=min(D(u),D(x)+c(x,u))=min(∞ , 3+1)=4

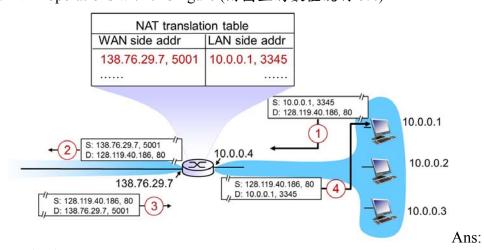
#6.D(v)=min(D(v),D(x)+c(x,v))=min(∞ , 3+2)=5


Forwarding table

Destination	Next hop (output link)		
u	у		
V	у		
W	у		
X	у		
У	у		

3. List changing processes of three tables of node X, Y and Z with the distance vector algorithm, from the time before the X-Y link cost is changed from 4 to 1 to the time three tables are stabilized. (第 1 行 table 是未變動前的穩定狀況,後 3 行 table 一行 3% (x, y, z 各看自己那列 1%),共 9%。數值有變動時,要寫出公式,各 1%共 4% => total 13%)

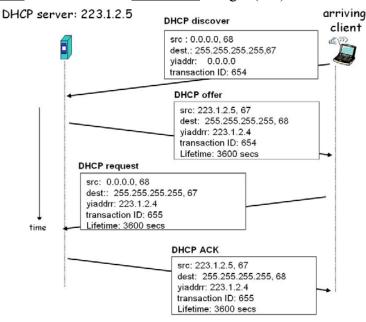
Ans:


a).
$$D_x(y) = \min\{C(x, y) + D_y(y), C(x, z) + D_z(y)\} = \min\{1 + 0, 50 + 1\} = 1$$

b).
$$D_y(x) = \min\{C(y,x) + D_x(x), C(y,z) + D_x(x)\} = \min\{1 + 0, 1 + 50\} = 1$$

c)
$$D_x(z) = \min\{C(x, z) + D_x(z), C(x, y) + D_y(z)\} = \min\{50 + 0, 1 + 1\} = 2$$

d).
$$D_x(x) = \min\{C(x, x) + D_x(x), C(x, y) + D_y(x)\} = \min\{50 + 0, 1 + 1\} = 2$$


4. Explain four NAT operations with this figure (用圖上的數值說明 8%)

NAT router must: (8%)

- outgoing datagrams: replace (source IP address, port #)=(10.0.0.1, 3345) (1%) of every outgoing datagram to (NAT IP address, new port #)=(138.76.29.7, 5001) (1%)
- remember (in NAT translation table) every (source IP address, port #)=(10.0.0.1, 3345) (2%) to (NAT IP address, new port #)=(138.76.29.7, 5001) translation pair (2%)
- *incoming datagrams: replace* (NAT IP address, new port #)=(138.76.29.7, 5001) (1%) in dest fields of every incoming datagram with corresponding (source IP address, port #)=(10.0.0.1, 3345) (1%) stored in NAT table

- 5. (a) What is the goal of DHCP? (2%) (b) List four steps of DHCP (8%) (10% total) Ans:
 - (a) Goal: allow host to *dynamically* obtain its IP address from network server when it joins network (2%)
 - (b) Flow: (8%)
 - host broadcasts "DHCP discover" msg (2%)
 - <u>DHCP server</u> responds with "<u>DHCP offer</u>" msg (2%)
 - <u>host</u> requests IP address: "<u>DHCP request</u>" msg (2%)
 - <u>DHCP server</u> sends address: "<u>DHCP ack</u>" msg (2%)

6. Describe how Ethernet uses <u>CSMA/CD</u> with <u>exponential backoff</u> (要寫出碰撞後如何動作) in detail (12%)

Ans:

- adapter doesn't transmit if it senses that some other adapter is transmitting, that is, carrier sense (2%)
- transmitting adapter aborts when it senses that another adapter is transmitting, that is, collision detection (2%)
- Before attempting a retransmission, adapter waits a random time, that is, random access with Exponential Backoff. (2%)
 - first collision: choose K from {0,1}; delay is K· 512 bit transmission times (2%) after second collision: choose K from {0,1,2,3}...(2%) after m collisions, choose K from {0,1,2,3,4....2^m-1} (2%)
- 7. (a) List three types of multiple access protocols and describe how they work briefly. (9%) (b) Classify FDMA, Token Passing and CSMA/CD into one of the type to whom they belong. (6%) (15% total)

Ans:

- (a)Three broad classes:
 - a. Channel Partitioning (2%)
 - divide channel into smaller "pieces" (time slots, frequency, code) to node for exclusive use (1%)
 - b. Random Access (2%)
 - channel not divided, allow collisions (1%)
 - c. "Taking turns" (2%)
 - Nodes take turns, but nodes with more to send can take longer turns (1%)

(b) Channel Partitioning: FDMA; (2%) Random Access: CSMA/CD (2%) "Taking turns": Token Passing (2%)

8.

(a) List a distance vector routing protocol. (2%) (b) List a Link State routing protocol. (2%) (c) Which protocol in (b) and (c) has the Security feature? (2%) (6% total)

Ans:

- (a) RIP.
- (b) OSPF
- (c) OSPF
- 9. Compare and contrast link state and distance vector routing algorithms. (10%)

Ans:

- Link state algorithms:
 - Computes the least-cost path between source and destination (2%) using complete, global knowledge about the network. (2%)
- Distance-vector routing:
 - The calculation of the least-cost path is carried out in <u>an iterative</u>, <u>distributed manner</u>. (2%)
 - A node only knows the neighbor to which it should forward a packet in order to reach given destination along the least-cost path (2%), and the cost of that path from itself to the destination (2%)
- 10. Consider the CRC generator, G=1001, and suppose that D has the value 10101010000. What is the value of R? (要寫出運算過程 6%, 8% total)

Ans:

If we divide 1001 into 10101010000, we get 10111101(過程 6%), with a remainder of R = 101 (2%).

	10111101	
1001	10101010000 1001 1110	
	1001	_
	1111	
	1001	_
	1100	
	1001	
	1010	-"
	1001	_
	1100	-
	1001	
	101	-