只寫答案而沒有解釋說明,扣一半分數 共 107 分,以扣分計

- 1. How does the traceroute program run with ICMP? (6%)
- 2. How to implement NAT at the router? (6%)
- 3. (a) What is the purpose of the DHCP protocol? (2%) (b) Draw a figure to show the four messages exchanged between the DHCP client and server. (8%, 10% total) (要畫圖,也要寫訊息名稱)
- 4. Draw a figure to show (a) the router architecture (4%) (b) three types of switching fabrics (6%) (10% total) (要書圖,也要寫名稱)
- 5. Compare and contrast link state and distance vector routing algorithms. (9%)
- 6. Use Dijkstra's shortest-path algorithm to compute the shortest path from v to all network nodes. (數值相同時,優先選字母順序較前者, 1% each, 7% total) (a) Show how the algorithm works by computing a table. (b) show the forwarding table of v. (一欄是 Next hop, 7%) (14% total)

- 7. 針對 IPv4 Class A 網路(以十進位表示,要寫完整過程) (10%) 將第一個 Class A 網路分成 7 subnets, subnet mask 的值為何?(2%) 請列出第7個 subnet 的網路表示法 (2%) 可用 IP 範圍?(4%) 共有幾個 IP 可用?(2%)
- 8. What are the two key network-layer functions in a datagram network? (名稱 2%, 說明 2%, 8% total) What is the additional network-layer function in a virtual-circuit network? (2%)

9. Consider sending a 1480-byte datagram into a link that has an MTU of 500 bytes, including 20-byte IP header. Suppose the original datagram is stamped with the identification number 1. List these segments in a table with their data lengths, IDs, flags and offsets. (表格中 data length, offset 每列一分,flag、ID全部一分。沒有解釋或不清楚,視狀況扣分,10%)

fragment	data lengths	ID	offset	flag
1				
••••				

- 10.Describe how TCP does its congestion control. (8%)
- 11.List changing processes of three tables of node X, Y and Z with the distance vector algorithm, from the time <u>before the X-Y link cost is changed from 4 to 1</u> to the time <u>three tables are stabilized</u>. (4 行 table 行 3%,共 12%, 2 行箭頭各 1%,共 2% => total 14%)

只寫答案而沒有解釋說明,扣一半分數

- How does the traceroute program run with ICMP? (6%) Ans:
- Source sends series of UDP segments to dest (2%)

First has TTL =1

Second has TTL=2, etc.

• When nth datagram arrives to nth router:

Router discards datagram (1%)

And sends to source an ICMP message (type 11, code 0) (1%)

- When ICMP message arrives, source calculates RTT (1%)
- Stopping criterion

UDP segment eventually arrives at destination host. Destination returns ICMP "host unreachable" packet (type 3, code 3) (1%)

2. How to implement NAT at the router? (6%)

Ans:

NAT router must: (6%)

- outgoing datagrams: replace (source IP address, port #) of every outgoing datagram to (NAT IP address, new port #)
- remember (in NAT translation table) every (source IP address, port #) to (NAT IP address, new port #) translation pair
- incoming datagrams: replace (NAT IP address, new port #) in dest fields of every incoming datagram with corresponding (source IP address, port #) stored in NAT table
- 3. DHCP: (10%)

Goal: allow host to dynamically obtain its IP address from network server when it joins network (2%)

Flow: (8%)

- host broadcasts "DHCP discover" msg
- <u>DHCP server</u> responds with "<u>DHCP offer</u>" msg
- host requests IP address: "DHCP request" msg
- DHCP server sends address: "DHCP ack" msg

4. (10%) (a) (4%)

(b)(6%)

List the three types of switching fabrics. (2% each, 6% total) switching via memory; (2%) switching via a <u>bus</u>; (2%) switching via an <u>interconnection network</u> (2%)

- 5. Compare and contrast link state and distance vector routing algorithms. (9%)
 - Link state algorithms: <u>Computes the least-cost path between source and destination</u> (1%) using <u>complete</u>, <u>global knowledge about the network</u>. (2%)
 - Distance-vector routing: The calculation of the least-cost path is carried out in <u>an iterative</u>, <u>distributed manner</u>. (2%) <u>A node only knows the neighbor to which it should forward a packet in order to reach given destination along the least-cost path (2%)</u>, and the <u>cost</u> of that path from itself to the destination (2%)
- 6. Use Dijkstra's shortest-path algorithm to compute the shortest path from v to all network nodes. (數值相同時,優先選字母順序較前者, 1% each, 7% total) (a) Show how the algorithm works by computing a table. (b) show the forwarding table of v. (7%)

Ans: (1% each, 7% total)

N'	D(s),p(s)	D(t),p(t)	D(u),p(u)	D(w),p(w)	D(x),p(x)	D(y),p(y)	D(z),p(z)
v	∞	9,v	-1,v	1,v	3,v	1,v	8
vu •	a.) 5,u	c.) 3,u		–1,v	3,v	1,v	8
vuw	5,u	3,u			d.) 2,w	-1,v	8
vuwy •	5,u	3,u			-2,w		e.) 15,y
vuwyx	5,u	-3,u					15,y
vuwyxt 🗠	b.) 4,t						f.) 5,t
vuwyxts *							5,t

- a). $D(s) = \min\{D(s), D(u) + C(u, s)\} = \min\{\infty, 1 + 4\} = 5$
- b). $D(s) = min\{D(s), D(t) + C(t, s)\} = min\{5, 3 + 1\} = 4$
- c). $D(t) = min\{D(t), D(u) + C(u, t)\} = min\{9, 1 + 2\} = 3$
- d). $D(x) = \min\{D(x), D(w) + C(w, x)\} = \min\{3, 1 + 1\} = 2$
- e). $D(z) = \min\{D(z), D(y) + C(y, z)\} = \min\{\infty, 1+14\} = 15$
- f). $D(z) = \min\{D(z), D(t) + C(t, z)\} = \min\{15, 3 + 2\} = 5$

Forwarding table of v: (1% each, 7% total)

Destination	Next hop (output link)	
S	u	
t	u	
u	u	
W	W	
X	W	
у	y	
Z	u	

7. 針對 IPv4 Class A 網路(以十進位表示,要寫完整過程) (10%) 將第一個 Class A 網路分成 7 subnets, subnet mask 的值為何?(2%) 請列出第7個 subnet 的網路表示法 (2%) 可用 IP 範圍?(4%) 共有幾個 IP 可用?(2%)

Ans:

因此第一個可用 Host ID 為 00000001. 0111<u>0000. 00000000.</u> <u>00000001</u> = <u>1.112.0.1</u> (2%)

最後一個可用 Host ID 為 00000001. 0111<u>1111. 11111111. 111111110</u> = <u>1.127.255.254</u> (2%)

->共有 <u>2²⁰-2</u> 個可用 Host ID (2%)

8. What are the two key network-layer functions in a datagram network? (8%) What is the additional network-layer function in a virtual-circuit network? (2%)

Ans: <u>forwarding</u>: move packets from router's input to appropriate router output

routing: determine route taken by packets from source to dest. (名稱 2%, 說明 2%, 8% total)

Additional function of VC-based network layer: <u>call setup</u>. (2%)

9. Consider sending a 1480-byte datagram into a link that has an MTU of 500 bytes, including 20-byte IP header. Suppose the original datagram is stamped with the identification number 1. List these segments in a table with their data lengths, IDs, flags and offsets. (表格中 data length, offset, flag 每列一分,ID 全部一分。沒有解釋或不清楚,視狀況扣分,10%)

fragment	data lengths	ID	offset	flag
1				

Ans:

IP data=500-20=480Bytes. 500 Bytes 內 IP data=480Bytes, 1480 byte-20 byte datagram IP data=1480-20=1460Bytes,分為 480, 4

fragment	data lengths	ID	offset	flag
1st	500	1	0	1
2nd	500	1	480/8=60	1
3rd	500	1	60*2=120	1
4th	40	1	60*3=180	0

(data length, offset,每列一分, flag、ID 全部一分。沒有解釋或不清楚,視狀況扣分,10%)

10.(8%)

When **CongWin** is below **Threshold** (1%), sender in slow-start phase, window grows exponentially (1%).

When **CongWin** is above **Threshold** (1%), sender is in congestion-avoidance phase, window grows linearly (1%).

When a triple duplicate ACK occurs (1%), Threshold set to CongWin/2 and CongWin set to Threshold (1%).

When timeout occurs (1%), Threshold set to CongWin/2 and CongWin is set to 1 MSS (1%).

11.(a) initial table X-Y cost from 4 -> 1 (4 行 table 一行 3% (x, y, z 各看自己那列 1%),共 12% , 2 行箭頭各 1%,共 2% => total 14%)

a).
$$D_x(y) = \min \left\{ C(x,y) + D_y(y), C(x,z) + D_x(y) \right\} = \min \left\{ 1 + 0, 50 + 1 \right\} = 1$$
 b).
$$D_y(x) = \min \left\{ C(y,x) + D_x(x), C(y,z) + D_x(x) \right\} = \min \left\{ 1 + 0, 1 + 50 \right\} = 1$$
 c).
$$D_x(z) = \min \left\{ C(x,z) + D_x(z), C(x,y) + D_y(z) \right\} = \min \left\{ 50 + 0, 1 + 1 \right\} = 2$$
 d).
$$D_x(x) = \min \left\{ C(z,x) + D_x(x), C(z,y) + D_y(z) \right\} = \min \left\{ 50 + 0, 1 + 1 \right\} = 2$$